Abstract
Hyperplasia of airway smooth muscle cells (ASMCs) is a characteristic change of chronic asthma patients. However, the underlying mechanisms that trigger this process are not yet completely understood. Store-operated Ca(2+) (SOC) entry (SOCE) occurs in response to the intracellular sarcoplasma reticulum (SR)/endoplasmic reticulum (ER) Ca(2+) store depletion. SOCE plays an important role in regulating Ca(2+) signaling and cellular responses of ASMCs. Stromal interaction molecule (STIM)1 has been proposed as an ER/SR Ca(2+) sensor and translocates to the ER underneath the plasma membrane upon depletion of the ER Ca(2+) store, where it interacts with Orai1, the molecular component of SOC channels, and brings about SOCE. STIM1 and Orai1 have been proved to mediate SOCE of ASMCs. In this study, we investigated whether STIM1/Orai1-mediated SOCE is involved in rat ASMC proliferation. We found that SOCE was upregulated during ASMC proliferation accompanied by a mild increase of STIM1 and a significant increase of Orai1 mRNA expression, whereas the proliferation of ASMCs was partially inhibited by the SOC channel blockers SKF-96365, NiCl(2), and BTP-2. Suppressing the mRNA expression of STIM1 or Orai1 with specific short hairpin RNA resulted in the attenuation of SOCE and ASMC proliferation. Moreover, after knockdown of STIM1 or Orai1, the SOC channel blocker SKF-96365 had no inhibitory effect on the proliferation of ASMCs anymore. These results suggested that STIM1/Orai1-mediated SOCE is involved in ASMC proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.