Abstract

Spermatogonial stem cells are required for the initiation of spermatogenesis and the continuous production of sperm. In addition, they can acquire pluripotency and differentiate into derivatives of the three embryonic germ layers when cultured in the appropriate conditions. Therefore, understanding the signaling pathways that lead to self-renewal or differentiation of these cells is of paramount importance for the treatment of infertility, the development of male contraceptives, the treatment of testicular cancers, and ultimately for tissue regeneration. In this report, we studied some of the signaling pathways triggered by glial cell line-derived neurotrophic factor (GDNF), a component of the spermatogonial stem cell niche produced by the somatic Sertoli cells. As model systems, we used primary cultures of mouse spermatogonial stem cells, a mouse spermatogonial stem cell line and freshly isolated testicular tubules. We report here that GDNF promotes spermatogonial stem cell proliferation through activation of members of the Src kinase family, and that these kinases exert their action through a PI3K/Akt-dependent pathway to up-regulate N-myc expression. Thus, to proliferate, spermatogonial stem cells activate mechanisms that are similar to the processes observed in brain stem cells and lung progenitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.