Abstract

spt23 plays multiple roles in the thermal tolerance of budding yeast. spt23 regulates unsaturated lipid acid (ULA) content in the cell, which can then significantly affect cellular thermal tolerance. Being a Ty suppressor, spt23 can also interact with transposons (Tys) that are contributors to yeast’s adaptive evolution. Nevertheless, few studies have investigated whether and how much spt23 can exert its regulatory functions through transposons. In this study, expression quantitative trait loci (eQTL) analysis was conducted with thermal-tolerant Saccharomyces cerevisiae strains, and spt23 was identified as one of the most important genes in mutants. spt23-overexpression (OE), deletion (Del), and integrative-expressed (IE) strains were constructed. Their heat tolerance, ethanol production, the expression level of key genes, and lipid acid contents in the cell membranes were measured. Furthermore, LTR (long terminal repeat)-amplicon sequencing was used to profile yeast transposon activities in the treatments. The results showed the Del type had a higher survival rate, biomass, and ethanol production, revealing negative correlations between spt23 expression levels and thermal tolerance. Total unsaturated lipid acid (TULA) contents in cell membranes were lower in the Del type, indicating its negative association with spt23 expression levels. The Del type resulted in the lower richness and higher evenness in LTR distributions, as well as higher transposon activities. The intersection of 3 gene sets and regression analysis revealed the relative weight of spt23’s direct and TY-induced influence is about 4:3. These results suggested a heat tolerance model in which spt23 increases cell thermal tolerance through transcriptional regulation in addition to spt23-transposon triggered unknown responses.Key points• spt23 is a key gene for heat tolerance, important for LA contents but not vital.• Deletion of spt23 decreases in yeast’s LTR richness but not in evenness.• The relative weight of spt23’s direct and TY-induced influence is about 4:3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.