Abstract

In bacteria, cytoplasmic levels of the effector nucleotide ppGpp are regulated in response to changes in growth conditions. This study describes the involvement of SpoT-mediated ppGpp accumulation in the survival of light-exposed bacteria during fatty acid starvation. In contrast to isogenic wild-type strains and relA mutants, the 'Vibrio angustum' S14 spoT and Escherichia coli relA spoT mutants displayed significant losses in viability in response to cerulenin-induced fatty acid starvation under cool-white fluorescent light. However, when starvation experiments were performed in complete darkness, or under light filtered through a UV-resistant perspex sheet, only a minor decline in viability was observed for the wild-type and mutant strains. This finding indicated that the lethal effect was mediated by weak UV emission. In contrast to the E. coli relA spoT mutant, which lacks ppGpp, the 'V. angustum' S14 spoT mutant exhibited higher ppGpp levels and lower RNA synthesis rates during fatty acid starvation, features that might be correlated with its lethality. In agreement with this finding, fatty acid starvation lethality also occurred upon induction of ppGpp overaccumulation in E. coli. These data suggest that the precise regulation of ppGpp levels in the stressed cell is crucial, and that both the absence and the overaccumulation of ppGpp impair fatty acid starvation survival of light-exposed cells. Moreover, the UV-induced lethal effect during fatty acid starvation was also observed for E. coli strains mutated in rpoS and dps, which, in the wild-type, are regulated directly or indirectly by ppGpp, respectively. The restoration of viability of fatty-acid-starved spoT mutant cells through the addition of exogenous catalase suggested that the observed light-dependent lethal effect was, at least in part, caused by UV-imposed oxidative stress. Based on these results, it is proposed that fatty acid starvation adaptation of light-exposed bacterial cells depends on the development of resistance to UV-induced oxidative stress. This stress resistance was found to require appropriate ppGpp levels, ppGpp-induced RpoS expression and, hence, upregulation of RpoS-regulated stress-defending genes, such as dps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.