Abstract

AimsElectroacupuncture (EA) is a potentially useful treatment for inflammatory pain. Receptor-interacting protein 3 (RIP3) triggers the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome; activation independent of necroptosis has been reported. However, the role of RIP3 in inflammatory pain and its EA-induced analgesic effects remains unclear. Main methodsMice were treated with EA (2 Hz, 2 mA) after complete Freund's adjuvant (CFA) pain models were established. Inhibition or activation of spinal RIP3 was achieved by intrathecal administration of GSK-843 (a specific RIP3 inhibitor) or microinjection of lentivirus-RIP3, respectively. Mechanical analgesiometry and thermal analgesiometry were used to assess paw withdrawal threshold and paw withdrawal latency in mice. Quantitative polymerase chain reaction (qRT-PCR) and Western blotting were used to evaluate the expression of RIP3 and NLPR3 in spinal dorsal horn (SDH) of mice. Key findingsThe expression of spinal RIP3 and NLPR3 increased significantly after CFA injection. Both intrathecal administration of GSK-843 and EA alleviated mechanical and thermal pain behaviors induced by CFA and inhibited the expression of RIP3 and NLRP3 in the SDH of CFA mice. Over-expression of RIP3 induces pain-like symptoms in mice and inhibits the regulatory effects of EA on inflammatory pain. SignificanceOur results indicate that the EA analgesia effect may be related to suppression of RIP3 and NLRP3 expression in the SDH. This study could provide potential insights into the underlying spinal mechanisms involved in the analgesic effect of EA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call