Abstract

We have investigated the electronic structure of rare-earth tetraborides, $\textrm{RB}_{4}$, using first-principle electronic structure methods (DFT) implemented in Quantum Espresso (QE). In this article we have studied heather-to neglected strong spin-orbit coupling (SOC) effects present in these systems on the electronic structure of these system in the non-magnetic ground state. The calculations were done under GGA and GGA+SO approximations using ultrasoft pseudopotentials and fully relativistic ultrasoft pseudopotentials (for SOC case). Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) exchange-correlation functionals within the linearized plane-wave (LAPW) method as implemented in QE were used. The projected density of states consists of 3 distinct spectral peaks well below the Fermi energy and separated from the continuum density of states around the Fermi energy. The discrete peaks arises due to rare-earth $s$-orbital, rare-earth $p$ + B $p$ and B $p$-orbitals while the continuum arises due to hybridized B $p$, rare-earth $d$ orbitals. Upon inclusion of SOC the peak arising due to rare-earth $p$-orbitals gets split into two peaks corresponding to $j=0.5$ and $j=1.5$ configurations. In case of $\textrm{LaB}_{4}$, in the presence of SOC, spin-split $4f$ orbitals contributes to density of states at the Fermi level while the density of states at the Fermi level largely remains unaffected for all other materials under consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.