Abstract

Brassinosteroid-insensitive 1 (BRI1), the receptor of brassinosteroids (BRs), is a dual-function serine/threonine/tyrosine protein kinase which initiates BR signaling and regulates plant growth via its protein kinase activity. Previous research has identified phosphorylation sites of Arabidopsis BRI1 in vivo and in vitro, but the significance of which to BR signaling and plant development has not been discussed comprehensively. To investigate this, we systematically characterized Arabidopsis BRI1 site-directed mutants in the weak bri1-5 background. For vegetative organ development regulation, we demonstrated that Thr-1039, Ser-1042, and Ser-1044 were critical for vegetative development because mutants with eliminated phosphorylation at these residues exhibited aberrant leaf growth, whereas Ser-1172 and Ser-1187 slightly inhibited leaf growth. For reproductive organ development regulation, first, the notion that Thr-1039, Ser-1042, and Ser-1044 were essential for normal plant height is supported by the evidence that mutations preventing phosphorylation at Thr-1039, Ser-1042, and Ser-1044 decreased plant height. Second, comparison of seed yield-related traits showed that unphosphorylated Ser-1168-Ala, Ser-1172-Ala, and Ser-1179-Ala+Thr-1180-Ala mutants reduced seed yield dramatically, whereas eliminating phosphorylation at Ser-1042 caused increased seed production. In addition, we found that Ser-1042 and Ser-1044 were essential for BR signaling. The unphosphorylated Ser-1042-Ala and Ser-1044-Ala mutants displayed hyposensitive phenotypes accompanied with decreased accumulation of dephosphorylated BRI1-EMS suppressor 1 (BES1) protein and increased Constitutive Photomorphogenesis Dwarf expression levels as well as limited inhibition of hypocotyl and root elongation under exogenous brassinolide. Taken together, our data suggest that BRI1 phosphorylation at specific sites differentially affects growth and development which may provide novel approaches to precisely regulate economic yield through modifying specific BRI1 phosphorylation sites in crop species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call