Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by enigmatic pathogenesis. Polyunsaturated fatty acids (PUFAs) are implicated in RA's development and progression, yet their exact mechanisms of influence are not fully understood. Soluble epoxide hydrolase (sEH) is an enzyme that metabolizes anti-inflammatory epoxy fatty acids (EpFAs), derivatives of PUFAs. In this study, we report elevated sEH expression in the joints of CIA (collagen-induced arthritis) rats, concomitant with diminished levels of two significant EpFAs. Additionally, increased sEH expression was detected in both the synovium of CIA rats and in the synovium and fibroblast-like synoviocytes (FLS) of RA patients. The sEH inhibitor TPPU attenuated the migration and invasion capabilities of FLS derived from RA patients and to reduce the secretion of inflammatory factors by these cells. Our findings indicate a pivotal role for sEH in RA pathogenesis and suggest that sEH inhibitors offer a promising new therapeutic strategy for managing RA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.