Abstract
The transport processes that occur at small length scales are greatly influenced by interfacial and intermolecular forces. Surface roughness at the nanoscale generates additional intermolecular interactions that arise due to the increased surface area. In this work, we have experimentally studied how the magnitude as well as the shape of surface roughness influences the microscale transport processes that occur in the contact line region of a liquid corner meniscus. The surface roughness contribution to the interaction potential was calculated and a direct relationship between the wetting properties of the liquid and the underlying surface properties was obtained. Since the underlying roughness alters the surface potential, the shape of the meniscus and in turn, the resulting capillary and disjoining pressure forces also changed. Atomic force microscopy was utilized to obtain a detailed characterization of the shape of the prepared surfaces. Surface morphology features were obtained from a height-height correlation function. These features were related to the wetting and transport properties of the meniscus at the contact line. Finally, the modified capillary and disjoining pressure forces on the structured surfaces were observed to influence the evaporative heat transfer from the corner meniscus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.