Abstract
We present the results of the analysis of the ultraviolet (UV) absorption edge of fluorine-modified sol-gel silica. UV transmission data, obtained by means of synchrotron radiation, have been analyzed in the spectral range 7.5–8.5 eV, with a spectral resolution of about 10 meV. Data on silica samples with different F content (from 0 to few 10 − 1 mol%) have been analyzed and compared with literature data on quartz and pure synthetic commercial silica. The analysis allows us to discriminate between the effects of the fluorine addition and those ascribable to structural peculiarities of the sol-gel networking. The estimated Urbach energy E U ( T = 0) ranges between 45 and 55 meV, higher that in crystalline quartz and lower than in commercial synthetic silica. The study of the temperature dependence of E U ( T) shows that the fluorine modification of the silica network causes the lowering of the static disorder and the widening of the energy gap. However, there is also a relevant effect of the production process, since sol-gel silica samples show lower E U values with respect to other types of silica, quite independently of the fluorine content. The analysis of the Raman spectra however shows that the starting amount of fluorine-modified molecular precursor influences the network condensation process, independently of the final fluorine content into the matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.