Abstract

The effect of ATP on mitochondrial membrane depolarization in rat submandibular glands was investigated. Exposure of the cell suspension to high concentrations of ATP induced a sustained depolarization of mitochondrial membrane. This effect was blocked in the presence of magnesium and reproduced by low concentrations of 2′,3′- O-(4-benzoylbenzoyl)adenosine 5′-triphosphate (BzATP), suggesting the implication of the P2X 7 purinergic receptor. This point was confirmed by comparison of the response to ATP by wild-type and P2X 7 knock-out (P2X 7R −/−) mice. Mitochondria took up calcium after ATP stimulation but the depolarization of the mitochondrial membrane by ATP was not affected by the removal of calcium from the extracellular medium. It was nearly fully suppressed in the absence of sodium and partially blocked by the mitochondrial Na/Ca exchanger inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157). Both ATP and monensin increased the uptake of extracellular sodium (as shown by the depolarization of the plasma membrane) but the sodium ionophore did not affect the mitochondrial membrane potential. It is concluded that the activation of P2X 7 receptors depolarizes the mitochondrial membrane. The uptake of extracellular sodium is necessary but not sufficient to induce this response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.