Abstract

Recent literature has shown that surface air temperature (SAT) in many high elevation regions, including the Tibetan Plateau (TP) has been increasing at a faster rate than at their lower elevation counterparts. We investigate projected future changes in SAT in the TP and the surrounding high elevation regions (between 25°–45°N and 50°–120°E) and the potential role snow-albedo feedback may have on amplified warming there. We use the Community Climate System Model version 4 (CCSM4) and Geophysical Fluid Dynamics Laboratory (GFDL) model which have different spatial resolutions as well as different climate sensitivities. We find that surface albedo (SA) decreases more at higher elevations than at lower elevations owing to the retreat of the 0 °C isotherm and the associated retreat of the snow line. Both models clearly show amplified warming over Central Asian mountains, the Himalayas, the Karakoram and Pamir during spring. Our results suggest that the decrease of SA and the associated increase in absorbed solar radiation (ASR) owing to the loss of snowpack play a significant role in triggering the warming over the same regions. Decreasing cloud cover in spring also contributes to an increase in ASR over some of these regions in CCSM4. Although the increase in SAT and the decrease in SA are greater in GFDL than CCSM4, the sensitivity of SAT to changes in SA is the same at the highest elevations for both models during spring; this suggests that the climate sensitivity between models may differ, in part, owing to their corresponding treatments of snow cover, snow melt and the associated snow/albedo feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.