Abstract
Isolated small airway abnormalities may be demonstrable at rest in patients with normal spirometry; however, the relationship of these abnormalities to exertional symptoms remains uncertain. This study uses an augmented cardiopulmonary exercise test (CPET) to include evaluation of small airway function during and following exercise to unmask abnormalities not evident with standard testing in individuals with dyspnoea and normal spirometry. Three groups of subjects were studied: 1) World Trade Center (WTC) dust exposure (n=20); 2) Clinical Referral (n=15); and Control (n=13). Baseline evaluation included respiratory oscillometry. Airway function during an incremental workload CPET was assessed by: 1) tidal flow versus volume curves during exercise to assess for dynamic hyperinflation and expiratory flow limitation; and 2) post-exercise spirometry and oscillometry to evaluate for airway hyperreactivity. All subjects demonstrated normal baseline forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC). Dyspnoea was reproduced during CPET in WTC and Clinical Referral groups versus Control without abnormality in respiratory pattern and minute ventilation. Tidal flow-volume curves uncovered expiratory flow limitation and/or dynamic hyperinflation with increased prevalence in WTC and Clinical Referral versus Control (55%, 87% versus 15%; p<0.001). Post-exercise oscillometry uncovered small airway hyperreactivity with increased prevalence in WTC and Clinical Referral versus Control (40%, 47% versus 0%, p<0.05). We uncovered mechanisms for exertional dyspnoea in subject with normal spirometry that was attributable to either small airway dysfunction during exercise and/or small airway hyperreactivity following exercise. The similarity of findings in WTC environmentally exposed and clinically referred cohorts suggests broad relevance for these evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.