Abstract

The effect of silicon dioxide nanoparticles on the formation of hydrate phases in the presence of CH4/CO2 has been studied. The theoretical experiment has been carried out by molecular dynamics methods at initial pressures in the system of 2.4 and 1.2 MPa and a temperature of 271 K for methane and carbon dioxide systems. The results showed that in the presence of silicon dioxide nanoparticles, the induction time of the methane hydrate formation decreased by 79%, and the amount of methane trapped in the hydrate cavity increased by 55.8% at a pressure of 2.4 MPa. In the presence of silicon dioxide nanoparticles, the induction time for the formation of carbon dioxide hydrate decreased by 62%, and the amount of carbon dioxide trapped in the hydrate cavity increased by 27.8% at a pressure of 1.2 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.