Abstract

The closely related second-order methods CC2 and ADC(2) usually perform very similarly for single excitations of organic molecules. However, as rationalized in this work, significant deviations between these two methods can arise if the ground state and a low-lying singly excited state arise from a strong coupling between their leading configurations. Such a configuration mixing is partially accounted for in CC2 through the ground-state singles amplitudes but is omitted in ADC(2). This can cause unusual deviations between the results obtained with these methods. In this work, we study how severe this effect can become at the example of two solvatochromic dyes: the negatively solvatochromic betaine dye N1-tBu and the positively solvatochromic bithiophene P1. These two dyes allow one to study the limits of both small and somewhat larger excitation energies and configuration mixing by tuning the S0 → S1 transition energy through the polarity of the environment. Higher-level calculations at the CC3 level provide information on the accuracy of ADC(2) and CC2 in these cases. The most extreme deviation between ADC(2) and CC2 is found for N1-tBu in vacuum, where the ADC(2) result is 0.45 eV below that of CC2. In this case, the methodical error of CC2 with respect to CC3 is only 0.05 eV. With increasing excitation energy in polar solvents, the CC2-ADC(2) deviation decreases and reaches a value of only 0.15 eV. For P1, which has larger excitation energies, these effects are reversed due to the opposite solvatochromism but also smaller in magnitude: the deviation increases from 0.08 eV in vacuum to 0.16 eV in the so-called conductor limit of the continuum solvation model. Although for these two dyes larger deviations are observed for smaller excitation energies, the extent of configuration mixing does not generally correlate with only the size of excitation energy. For example, s-triazine (0.15 eV), formamide (0.19 eV), and formaldehyde (0.23 eV) also show large deviations between CC2 and ADC(2) despite their much higher excitation energies compared to those of N1-tBu and P1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.