Abstract

This work examines the modelling and potential formation of submicron ferroelectric pillars which are exploited as an active component of modern 1–3 piezocomposites. These structures are of interest in sensor and actuator technologies, and most notably energy harvesting devices. This research area has seen recent growth in terms of interest with the advent of electronics with greater portability and wireless sensors. The fabrication of nanopillars on the single crystal surface is investigated using a nanoimprint lithography (NIL) approach. The use of a disposable master allows the user to reproduce large-area nanostructures and dry etching then allows for the nanopillars to be formed. Results on the prediction of effective electromechanical properties of 1–3-type composites either LiNbO3 single crystal or (1 – x)Pb(Mg1/3Nb2/3)O3 – xPbTiO3 (PMN-PT) single crystal are given for comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.