Abstract
Grafted copolymers which consist of a polydimethylsiloxane backbone and polyethylene oxide-co-propylene oxide pendant groups are used as surfactants to stabilize the foam cells in the flexible polyurethane foaming process. The mechanical properties of the cured polyurethane foam such as air permeability and foam cell size are affected significantly by the structure of the silicone surfactant used in the formulation. It is shown that silicone surfactant has an important impact on both the bubble generation and the cell window stabilization stage. A series of silicone surfactants with different structures was tested. Surfactants with higher silicone content will provide lower surface tension and thus help increase the number of air bubbles introduced during mixing. These air bubbles serve as the starting point for foam cell growth. As a result, the cured polyurethane foam made with higher silicone content surfactant has a smaller bubble size. It is also shown that silicone surfactant can reduce the cell window drainage rate due to the surface tension gradient along the cell window. The Gibbs film elasticity, the dynamic film elasticity, and the film drainage rate were measured for the first time versus surfactant composition. Surfactants with longer siloxane backbones are shown to give higher film elasticity. Using the vertical film drainage and foam column tests, it is shown that surfactants with higher film elasticity will yield slower drainage rate and better foam cell stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.