Abstract

Adenylate cyclase, guanylate cyclase, and the cyclic nucleotide phosphodiesterases of Cylindrotheca fusiformis were characterized in crude and partially purified preparations. Both cyclases were membrane-bound and required Mn(2+) for activity, though Mg(2+) gave 50% activity with adenylate cyclase. Properties of adenylate cyclase were similar to those of higher eukaryotic cyclases in some respects, and in other respects were like lower eukaryotic cyclases. Guanylate cyclase was typical of other lower eukaryotic enzymes.Two phosphodiesterase activities were found, one selective for cyclic AMP, the other for cyclic GMP. The 5'-nucleoside monophosphate was the major product of both activities and each of the enzymes had distinctive divalent cation requirements, pH optima, and kinetic parameters. Both phosphodiesterases were similar to those of other lower eukaryotes with one notable difference: the cyclic AMP enzyme was inhibited by calcium.Changes in the cyclic nucleotide levels were quantitated in light-dark and silicon-starvation synchronized cultures using a more sensitive radioimmunoassay than used in a previously published study (Borowitzka and Volcani 1977 Arch Microbiol 112: 147-152). Contrary to the previous report, the cyclic GMP level did not change significantly in either synchrony. The cyclic AMP level increased dramatically very early in the period of DNA replication with the peak cyclic AMP accumulation substantially preceding that of DNA synthesis in both synchronies. There was no significant change in the activity of either cyclase or either phosphodiesterase during either synchrony. Thus, the mechanism for the rise in cAMP level remains unclear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.