Abstract

We examined whether signals from the neuroma or the dorsal root ganglion of the injured segment are critical for the generation of neuropathic pain. To this aim, we used a rat model of peripheral neuropathy made by transecting the inferior and superior caudal trunks at the level between the S1 and S2 spinal nerves under enflurane anesthesia. These animals displayed tail-withdrawal responses to normally innocuous mechanical stimulation applied to the tail with a von Frey hair (2 g). Also, these animals, compared to pre-surgical value, displayed shorter tail-withdrawal latencies following immersion of the tail to warm (40°C) or cold (4°C) water. Transection of the S1 spinal nerve between the dorsal root ganglion and neuroma did not change the behavioral signs of neuropathic pain. In contrast, S1 dorsal rhizotomy significantly reduced the behavioral signs. The data suggest that signals arising from the dorsal root ganglion cells of the injured segment, but not from the neuroma, are critical for the generation of neuropathic pain in this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.