Abstract
The present work focuses on the effect of microstructural refinement on the thermo-mechanical cyclic stability of a Ti50.3Ni33.7Pd16 high temperature shape memory alloy (HTSMA) which was severe plastically deformed using equal channel angular extrusion (ECAE). The grain/subgrain size of the high temperature austenite phase was refined down to about 100nm, the lowest reported to date in HTSMAs. The increase in strength differential between the onset of transformation and the macroscopic plastic yielding after ECAE led to a notable enhancement in the cyclic stability during isobaric cooling–heating experiments. The reduction in irrecoverable strain levels was attributed to the increase in critical stress for dislocation slip due to the microstructural refinement during the ECAE process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.