Abstract

Brugada syndrome (BrS) is an inherited electrical disorder associated with a high incidence of sudden death. In a minority of patients, it has been linked to mutations in SCN5A, the gene encoding the pore-forming alpha-subunit of the cardiac Na(+) channel. Other causally related genes still await identification. We evaluated the role of HERG (KCNH2), which encodes the alpha-subunit of the rapid delayed rectifier K(+) channel (I(Kr)), in BrS. In two unrelated SCN5A mutation-negative patients, different amino acid changes in the C-terminal domain of the HERG channel (G873S and N985S) were identified. Voltage-clamp experiments on transfected HEK-293 cells show that these changes increase I(Kr) density and cause a negative shift of voltage-dependent inactivation, resulting in increased rectification. Action potential (AP) clamp experiments reveal increased transient HERG peak currents (I(peak)) during phase-0 and phase-1 of the ventricular AP, particularly at short cycle length. Computer simulations demonstrate that the increased I(peak) enhances the susceptibility to loss of the AP-dome typically in right ventricular subepicardial myocytes, thereby contributing to the BrS phenotype. Our study reveals a modulatory role of I(Kr) in BrS. These findings may provide better understanding of BrS and have implications for diagnosis and therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call