Abstract

Solar-blind photodetection and photoconductive gain >50 corresponding to a responsivity >8 A/W were observed for β-Ga2O3 Schottky photodiodes. The origin of photoconductive gain was investigated. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. It is concluded that self-trapped hole formation near the Schottky diode lowers the effective Schottky barrier in reverse bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga2O3 photodetectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call