Abstract

The trace element selenium is an essential micronutrient that plays an important role in maintaining homeostasis of several tissues including the immune system of mammals. The vast majority of the biological functions of selenium are mediated via selenoproteins, proteins which incorporate the selenium-containing amino acid selenocysteine. Several bacterial infections of humans and animals are associated with decreased levels of selenium in the blood and an adjunct therapy with selenium often leads to favorable outcomes. Many pathogenic bacteria are also capable of synthesizing selenocysteine suggesting that selenoproteins may have a role in bacterial physiology. Interestingly, the composition of host microbiota is also regulated by dietary selenium levels. Therefore, bacterial pathogens, microbiome, and host immune cells may be competing for a limited supply of selenium. Elucidating how selenium, in particular selenoproteins, may regulate pathogen virulence, microbiome diversity, and host immune response during a bacterial infection is critical for clinical management of infectious diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call