Abstract

Glutathione peroxidase is a crucial component of cellular antioxidant defenses. Using tertiary butyl hydroperoxide (tBOOH) as a model for oxidant stress in alveolar macrophages, we determined the effectiveness of glutathione peroxidase in preventing both cell "death" (lactate dehydrogenase release) and more subtle alterations in cell function. The KM of glutathione peroxidase for tBOOH was 54 microM, and the Vmax was 26 nmol/min/10(6) cells in alveolar macrophages. Concentrations of tBOOH greater than 100 microM caused lactate dehydrogenase release; however, a lag greater than 30 min was observed when with 10 mM tBOOH. With 200 microM tBOOH, the rate of decrease in membrane potential, measured by 3,3'-dipentyloxacarbocyanine iodide fluorescence, inversely correlated with glutathione peroxidase. Computer-enhanced microscopy showed that this fluorescence predominately was in mitochondria. NADPH fluorescence was altered in selenium-deficient alveolar macrophages; the tBOOH-dependent rate of NADPH oxidation was slowed, and higher concentrations of tBOOH were required to disturb the steady state NADPH/NADP+ ratio. Although alteration in NADPH or glutathione oxidation can reflect oxidant stress and can adversely affect cell function, such a change does not dictate irreversible injury. Nevertheless, irreversible injury by oxidants appears to involve an overwhelming of the glutathione-NADPH antioxidant system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.