Abstract

Ocean acidification is one of the major impacts of climate change in sea which is manifested by the decrease in hydrogen ion concentration (pH) of seawater mainly due to increased uptake of CO2 and reduction in carbonate ions. This is a report on the dissolution rate of dead shells of four marine bivalves and spines of a sea urchin when treated with different levels of CO2 dissolved in seawater for 48 hours which was measured gravimetrically. Dissolution of dead shells expressed as reduction in shell weight was directly proportional to the concentration of dissolved CO2. Live thallus of green seaweed Chaetomorpha antennina did reduce the magnitude of dissolution rates (P<0.05) of all the shells and spines considerably as well as the change in pH of ambient seawater due to the addition of CO2. The remedial property of seaweeds was more effective at lower concentrations of dissolved CO2. The induced change in pH was restored by green seaweed only at concentrations above 250 ppm. Although we noticed strong impact of dissolved CO2 on the dead shells of Mactrinula plicataria even at 100 ppm level, the remedial action by the green seaweed was maximum in Siliqua radiata followed by Perna viridis. Results of this laboratory study shows the positive role of seaweeds in neutralizing the acidification impacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.