Abstract

The macrophage Class A scavenger receptor MARCO (macrophage receptor with a collagenous structure) functions as a pattern-recognition receptor for bacterial components, but its role in responses to CpG oligonucleotide sequences (CpG-ODN) in microbial DNA has not been characterized. Phosphorothioate (PS)-linked CpG-ODN stimulated IL-12 and NO production in wild-type but not in MARCO-deficient, thioglycollate-elicited peritoneal macrophages. MARCO and the related class A receptor SR-A belong to a redundant system of receptors for PS ODNs. The ability of MARCO to bind CpG-ODNs and conversely, to costimulate IL-12 and NO production upon specific ligation with immobilized mAb is consistent with MARCO being a signaling receptor for CpG-ODNs, costimulating TLR9-mediated NO and IL-12 production in macrophages. In contrast to MARCO, SR-A is likely to mediate negative regulation of macrophage responses to CpG-ODNs. In particular, increased affinity toward SR-A may contribute to decreased potency of oligo G-modified CpG-ODNs in stimulating IL-12 production. The results suggest that differential involvement of activating and inhibitory membrane receptors, such as SR-A and MARCO, may underlie profound differences observed in biological activities of different ODN sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call