Abstract
Infusion of saline prior to radiofrequency ablation (RFA) is known to enlarge the thermal coagulation zone. The abundance of ions in saline elevate the electrical conductivity of the saline-saturated region. This promotes greater electric current flow inside the tissue, which increases the amount of RF energy deposition and subsequently enlarges the coagulation zone. In theory, infusion of higher concentration of saline should lead to larger coagulation zone due to the greater number of ions. Nevertheless, existing studies on the effects of concentration on saline-infused RFA have been conflicting, with the exact role of saline concentration yet to be fully elucidated. In this paper, computational models of saline-infused RFA were developed to investigate the role of saline concentration on the outcome of saline-infused RFA. The elevation in tissue electrical conductivity was modelled using the microscopic mixture model, while RFA was modelled using the coupled dual porosity-Joule heating model. Results obtained indicated that the presence of a concentration threshold to which no further elevation in tissue electrical conductivity and enlargement in thermal coagulation can occur. This threshold was determined to be at 15% NaCl. Analysis of the Joule heating distribution revealed the presence of a secondary Joule heating site located along the interface between wet and dry tissue. This secondary Joule heating was responsible for the enlargement in coagulation volume and its rapid growth phase during ablation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.