Abstract

We use the ab initio multiple spawning method with potential energy surfaces and nonadiabatic coupling vectors computed from multistate multireference perturbation theory (MSPT2) to follow the dynamics of ethylene after photoexcitation. We introduce an analytic formulation for the nonadiabatic coupling vector in the context of MSPT2 calculations. We explicitly include the low-lying 3s Rydberg state which has been neglected in previous ab initio molecular dynamics studies of this process. We find that although the 3s Rydberg state lies below the optically bright ππ* state, little population gets trapped on this state. Instead, the 3s Rydberg state is largely a spectator in the photodynamics, with little effect on the quenching mechanism or excited state lifetime. We predict the time-resolved photoelectron spectrum for ethylene and point out the signature of Rydberg state involvement that should be easily observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call