Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-beta) superfamily, are multifunctional cytokines regulating a broad spectrum of biological functions. Recent studies show the presence of BMP receptor 1a mutations in juvenile polyposis and frequent Smad4 mutations in colon cancer, suggesting that aberrations in BMP signaling play an important role in intestinal cancer pathogenesis. However, the exact molecular mechanisms remain poorly understood. The Runt domain transcription factor RUNX3 is an integral component of signaling pathways mediated by TGF-beta and BMPs. RUNX3 is a gastric and colon tumor suppressor, functioning downstream of TGF-beta. Recently, we showed the tumor-suppressive effects of RUNX3 by its ability to attenuate beta-catenin/T-cell factors (TCFs) transactivation in intestinal tumorigenesis. Here, we explore the molecular basis of the tumor-suppressive function of the BMP pathway through RUNX3 in colorectal carcinogenesis. BMP exerted a growth-suppressive effect in HT-29, a human colorectal cancer cell line. c-Myc oncogene was found to be downregulated by BMP and/or RUNX3. We show that upregulation of RUNX3 by BMP reduces c-Myc expression. Evidence is presented suggesting that RUNX3 downregulates c-Myc expression by two parallel pathways-directly at the transcriptional level and through attenuation of beta-catenin/TCFs, downstream of BMPs in colorectal cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.