Abstract

The proteins which become associated with nuclei during hyperthermic exposure were characterized by labeled amino acid incorporation. Actinomycin-D (Act-D) or cycloheximide (CHM) pretreatment was used to determine whether concurrent RNA or protein synthesis is required for hyperthermia to induce the increase in nuclear protein content. Prior to heat exposure exponentially growing HeLa cells were (i) pulse labeled for 1 h, (ii) labeled for 36 h, or (iii) labeled for 24 h followed by 17 h chase. The nuclear specific activity (CPM/microgram protein) of [3H]lysine-labeled proteins did not change under any of the labeling conditions, whereas that of [3H]leucine-containing proteins increased significantly with (i) but not with (ii) or (iii), while that of [3H]tryptophan-labeled protein increased significantly with (i) and (ii) but not with (iii). Act-D treatment 1 h prior to and during heating did not affect nuclear protein increase, while CHM-treated cells showed generally less nuclear protein content (70% of control at 60 min) but nevertheless significant nuclear protein increase upon heating (60% increase at 60 min from 0 min). These results suggest that those proteins associated with nuclei following heat exposure are nonhistones with a high turnover rate, and the process dose not require the synthesis of RNA or proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.