Abstract

Postnatal overfeeding can increase the long-term risk of metabolic disorders, such as obesity, but the underlying mechanisms remain unclear and treatment approaches are limited. Receptor-interacting protein kinase 3 (RIPK3) is associated with several metabolic diseases. We investigated the effects of RIPK3 on neonatal overfeeding-related metabolic disorders. On postnatal day 3, litter sizes were adjusted to 9-10 (normal litters, NL) or 2-3 (small litters, SL) mice per dam to mimic postnatal overfeeding. After weaning, NL and SL mouse were fed normal diet. We generated an adeno-associated virus (AAV) carrying short hairpin RNA (shRNA) against Ripk3 and an empty vector as a control. The NL and SL groups were treated intravenously with 1×1012 vector genome of AAV vectors at week 6. The SL group showed a higher body weight than the NL group from week 3 of age through adulthood. At weeks 6 and 13, the SL group exhibited impaired glucose and insulin tolerance, RIPK3 up-regulation, and lipid accumulation in liver and adipose tissues. In the SL group, the genes involved in lipid synthesis and lipolysis were increased, whereas fatty acid β-oxidation-related genes were weakened in adipose tissue and liver. At week 13, AAV-shRNA-Ripk3 ameliorated adipose tissue hypertrophy, hepatic steatosis, insulin resistance, and dysregulated lipid metabolism in the adipose tissue and liver of SL mice. These findings support a novel mechanism underlying the pathogenesis of postnatal overfeeding-related metabolic disorders and suggest potential therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.