Abstract
Ring-enlargement reactions can provide a fast route towards the formation of six-membered single-ring or polycyclic aromatic hydrocarbons (PAHs). To investigate the participation of the cyclopentadienyl (C5H5) radical in ring-enlargement reactions in high-temperature environments, a mass-spectrometric study was conducted. Experimental access to the C5H5 high-temperature chemistry was provided by two counterflow diffusion flames. Cyclopentene was chosen as a primary fuel given the large amount of resonantly stabilized cyclopentadienyl radicals produced by its decomposition and its high tendency to form PAHs. In a second experiment, methane was added to the fuel stream to promote methyl addition pathways and to assess the importance of ring-enlargement reactions for PAH growth. The experimental dataset includes mole fraction profiles of small intermediate hydrocarbons and of several larger species featuring up to four condensed aromatic rings. Results show that, while the addition of methane enhances the production of methylcyclopentadiene and benzene, the concentration of larger polycyclic hydrocarbons is reduced. The increase of benzene is probably attributable to the interaction between the methyl and the cyclopentadienyl radicals. However, the formation of larger aromatics seems to be dominated only by the cyclopentadienyl driven molecular-growth routes which are hampered by the addition of methane. In addition to the experimental work, two chemical mechanisms were tested and newly calculated reaction rates for cyclopentadiene reactions were included. In an attempt to assess the impact of cyclopentadienyl ring-enlargement chemistry on the mechanisms' predictivity, pathways to form benzene, toluene, and ethylbenzene were investigated. Results show that the updated mechanism provides an improved agreement between the computed and measured aromatics concentrations. Nevertheless, a detailed study of the single reaction steps leading to toluene, styrene, and ethylbenzene would be certainly beneficial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.