Abstract

Acetyl-CoA carboxylase, the rate-limiting enzyme in the biogenesis of long-chain fatty acids, is regulated by phosphorylation and dephosphorylation. The major phosphorylation sites that affect carboxylase activity and the specific protein kinases responsible for phosphorylation of different sites have been identified. A form of acetyl-CoA carboxylase that is independent of citrate for activity occurs in vivo. This active form of carboxylase becomes citrate-dependent upon phosphorylation under conditions of reduced lipogenesis. Therefore, phosphorylation-dephosphorylation of acetyl-CoA carboxylase is the enzyme's primary short-term regulatory mechanism; this control mechanism together with cellular metabolites such as CoA, citrate, and palmitoyl-CoA serves to fine-tune the synthesis of long-chain fatty acids under different physiological conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.