Abstract

Ascaris suum mitochondrial malic enzyme catalyzes the divalent metal ion dependent conversion of l-malate to pyruvate and CO 2, with concomitant reduction of NAD(P) to NAD(P)H. In this study, some of the residues that form the adenosine binding site of NAD were mutated to determine their role in binding of the cofactor and/or catalysis. D361, which is completely conserved among species, is located in the dinucleotide-binding Rossmann fold and makes a salt bridge with R370, which is also highly conserved. D361 was mutated to E, A and N. R370 was mutated to K and A. D361E and A mutant enzymes were inactive, likely a result of the increase in the volume in the case of the D361E mutant enzyme that caused clashes with the surrounding residues, and loss of the ionic interaction between D361 and R370, for D361A. Although the K m for the substrates and isotope effect values did not show significant changes for the D361N mutant enzyme, V/ E t decreased by 1400-fold. Data suggested the nonproductive binding of the cofactor, giving a low fraction of active enzyme. The R370K mutant enzyme did not show any significant changes in the kinetic parameters, while the R370A mutant enzyme gave a slight change in V/ E t, contrary to expectations. Overall, results suggest that the salt bridge between D361 and R370 is important for maintaining the productive conformation of the NAD binding site. Mutation of residues involved leads to nonproductive binding of NAD. The interaction stabilizes one of the Rossmann fold loops that NAD binds. Mutation of H377 to lysine, which is conserved in NADP-specific malic enzymes and proposed to be a cofactor specificity determinant, did not cause a shift in cofactor specificity of the Ascaris malic enzyme from NAD to NADP. However, it is confirmed that this residue is an important second layer residue that affects the packing of the first layer residues that directly interact with the cofactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call