Abstract

This study investigated the proapoptotic effects of oxidized low density lipoprotein (oxLDL), which plays a key role in atherogenesis, on normal fresh human monocytes isolated from peripheral blood (PBMs), on human monocyte-derived macrophages, and on U937 monocytic cell line. OxLDL were generated by hypochlorous acid (HOCl) treatment of native LDL. We demonstrated that HOCl–oxLDL (200 μg/ml) induced apoptosis in PBMs and U937 cells via the mitochondrial pathway, whereas it failed to induce apoptosis in human monocyte-derived macrophages. OxLDL-induced U937 cells apoptosis involved ROS generation, mitochondrial Bax translocation with a disruption of mitochondrial membrane potential, cytosolic liberation of cytochrome c and subsequently activation of caspases-9 and -3. The interference of ROS scavengers N-acetylcysteine and catalase with HOCl–oxLDL-induced apoptosis further supports the importance of mitochondrial ROS production in this process. Bcl-2 overexpression prevented Bax translocation whereas it failed to prevent ROS generation indicating that ROS is an upstream signal for inducing mitochondrial apoptotic damages. Because monocyte apoptosis could limit early atheroma formation, it will be interesting to identify the signaling pathway(s) induced by HOCl–oxLDL leading to ROS generation. In contrast, monocyte-derived macrophages, which resist to HOCl–oxLDL-induced oxidative stress, may promote atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.