Abstract

Ultrafiltration (UF) is a highly efficient technique for algal-rich water purification, but it is heavily contaminated due to the complex water characteristics. To solve this problem, potassium permanganate (KMnO4) oxidation enhanced with sodium sulfite (Na2SO3) was proposed as a pretreatment means. The results showed that the end-normalized flux was elevated from 0.10 to 0.91, and the reversible fouling resistance was reduced by 99.95%. The membrane fouling mechanism also changed obviously, without the generation of cake filtration. Regarding the properties of algal-rich water, the zeta potential was decreased from −29.50 to −5.87 mV after KMnO4/Na2SO3 pretreatment, suggesting that the electrostatic repulsion was significantly reduced. Meanwhile, the fluorescent components in algal-rich water were significantly eliminated, and the removal of dissolved organic carbon was increased to 67.46%. In the KMnO4/Na2SO3 process, reactive manganese species (i.e., Mn(V), Mn(III) and MnO2) and reactive oxygen species (i.e., SO4•− and •OH) played major roles in purifying algal-rich water. Specifically, SO4•−, •OH, Mn(V) and Mn(III) could effectively oxidize algal pollutants. Simultaneously, the in-situ adsorption and coagulation of MnO2 could accelerate the formation of flocs by decreasing the electrostatic repulsion between cells, and protect the algal cells from being excessive oxidized. Overall, the KMnO4/Na2SO3 process showed significant potential for membrane fouling alleviation in purifying algal-rich water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.