Abstract

Rare earths (RE) have been used to increase high temperature oxidation resistance of chromia and alumina forming alloys. The RE can be added as elements (or oxides) to the alloys or applied as oxide coatings to the alloy surface. This paper presents the effect of different RE oxide coatings and lanthanum chromite coatings on the high temperature oxidation behavior of Fe20Cr and Fe20Cr4Al alloys. The oxidation resistance of the Fe20Cr alloy increased with increase in ionic radius of the RE element in the coating. The RE oxides decreased chromia growth rate more than alumina growth rate. In extended cyclic oxidation tests that were carried out from peak temperatures of 900 °C, 1,000 °C and 1,100 °C to room temperature at cooling rates of 300 °C/s and 1,000 °C/s, the La2O3 coating increased cyclic oxidation resistance of the Fe20Cr alloy significantly more than the Pr2O3 coating. The role of RE in increasing overall oxidation resistance of chromia forming alloys is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.