Abstract

We study quantum effects of strong driving field applied to dissipative hybrid qubit-cavity system which are relevant for a realization of quantum gates in superconducting quantum metamaterials. We demonstrate that effects of strong and non-stationary drivings have significantly quantum nature and can not be treated by means of mean-field approximation. This is shown from a comparison of steady state solution of the standard Maxwell-Bloch equations and numerical solution of Lindblad equation on a density matrix. We show that mean-field approach provides very good agreement with the density matrix solution at not very strong drivings $f<f^*$ but at $f>f^*$ a growing value of quantum correlations between fluctuations in qubit and photon sectors changes a behavior of the system. We show that in regime of non-adiabatic switching on of the driving such a quantum correlations influence a dynamics of qubit and photons even at weak $f$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.