Abstract

The role of the amplitude, number, and duration of unipolar rectangular electric pulses in cell membrane electropermeabilization in vitro has been the subject of several studies. With respect to unipolar rectangular pulses, an improved efficiency has been reported for several modifications of the pulse shape: separate bipolar pulses, continuous bipolar waveforms, and sine-modulated pulses. In this paper, we present the results of a systematic study of the role of pulse shape in permeabilization, cell death, and molecular uptake. We have first compared the efficiency of 1-ms unipolar pulses with rise- and falltimes ranging from 2 to 100 μs, observing no statistically significant difference. We then compared the efficiency of triangular, sine, and rectangular bipolar pulses, and finally the efficiency of sine-modulated unipolar pulses with different percentages of modulation. We show that the results of these experiments can be explained on the basis of the time during which the pulse amplitude exceeds a certain critical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call