Abstract

Surfactant protein C (SP-C) is a protein present in the pulmonary surfactant system that is involved in the biophysical properties of this lipoprotein complex, but it also has a role in lung defense and homeostasis. In this article, we propose that the link between both functions could rely on the ability of SP-C to induce fragmentation of phospholipid membranes and generate small vesicles that serve as support to present different ligands to cells in the lungs. Our results using bimolecular fluorescence complementation and tunable resistive pulse sensing setups suggest that SP-C oligomerization could be the triggering event that causes membrane budding and nanovesiculation. As shown by fluorescence microscopy and flow cytometry, these vesicles are differentially assimilated by alveolar macrophages and alveolar type II cells, indicating distinct roles of these alveoli-resident cells in the processing of the SP-C- induced vesicles and their cargo. These results depict a more accurate picture of the mechanisms of this protein, which could be relevant for the comprehension of pulmonary pathologies and the development of new therapeutic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.