Abstract

The electrochemical reduction mechanism of salicylideneaniline has been investigated by cyclic voltammetry, controlled potential electrolysis and coulometry. The main reduction product, characterised by HPLC, IR, 1H NMR in X-ray diffractometry, is an anionic dimer, present in two diastereoisomeric forms, together with the conjugate base of the substrate. The latter stems from an intermolecular proton transfer from the substrate to a basic reduction intermediate. Kinetic analysis of the voltammetric results has allowed the electrode reaction mechanism to be fully characterised, showing in particular that the rate-determining step is the coupling between two anionic radicals, promoted by intramolecular H-bridging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.