Abstract
This review surveys the role of protic and dipolar aprotic solvents in 1,3-dipolar cycloaddition reactions and explains how it could be used to advantage in heterocyclic syntheses. Special effort is made throughout the article to point out how protic and dipolar aprotic solvents affect the rates of cycloaddition reactions and how proper understanding and use of these solvent effects could help in performing many cycloadditions with synthetical applications and thus enhance the versatility and synthetic utility of these reactions in general. 1. Mechanism of 1,3-Dipolar Cycloadditions 1.1. Solvent and Substituent Effects 1.2. Protic and Dipolar Aprotic Solvent Effects 2. Applications 2.1. Investigation of Reaction Mechanisms 2.2. Heterocyclic Syntheses 3. Cycloadditions Involving Anionic 1,3-Dipoles 3.1. Direct 1,3-Cycloaddition of Azide Anion to C≡N Bonds and the Synthesis of Tetrazoles 3.2. Indirect 1,3-Cycloaddition of Azide Anion to Multiple Bonds
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.