Abstract

Duchenne muscular dystrophy (DMD) is an inherited fatal X-linked myogenic disorder with a prevalence of 1 in 3500 male live births. It affects voluntary muscles, and heart and breathing muscles. DMD is characterized by continuous degeneration and regeneration cycles resulting in extensive fibrosis and a progressive reduction in muscle mass. Since the identification of a reduction in dystrophin protein as the cause of this disorder, numerous innovative and experimental therapies, focusing on increasing the levels of dystrophin, have been proposed, but the clinical improvement has been unsatisfactory. Dystrophin forms the dystrophin-associated glycoprotein complex and its proteins have been studied as a promising novel therapeutic target to treat DMD. Among these proteins, cell surface glycosaminoglycans (GAGs) are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with numerous ligands, including ECM constituents, adhesion molecules and growth factors that play a crucial role in muscle development and maintenance. In this article, we have reviewed in vitro, in vivo and clinical studies focused on the functional role of GAGs in the pathophysiology of DMD with the final aim of summarizing the state of the art of GAG dysregulation within the ECM in DMD and discussing future therapeutic perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.