Abstract
Incubation of isolated hepatocytes under N2/CO2 (no O2) produced a rapid and strong inhibition of overall polypeptide biosynthesis, which was neither related to cell death nor to the appearance of specific stress proteins. Treatment of the cells with the tyrosine-kinase inhibitor genistein or with the serine/threonine-protein-kinase inhibitor H7 did not modify the impairment of protein synthesis induced by oxygen deprivation, indicating that such signal-transduction pathways are probably not involved in the anoxia-mediated effect. Okadaic acid (100 nM) and Na3VO4 (1 mM) reduced the incorporation of [14C]Leu into proteins of hepatocytes maintained under aerobic conditions (93.3 kPa O2). The effects of oxygen deprivation and okadaic acid were additive, whereas sodium vanadate did not enhance the impairment of protein synthesis induced by anoxia. This observation suggests that a common mechanism, involving the net phosphorylation of protein tyrosine residues, that is insensitive to genistein might participate in the negative control of the translation induced by oxygen deprivation. The effect of anoxia on the synthesis of proteins was fully and rapidly reversible upon the restoration of oxygen supply, thus indicating that hepatocytes are able to sense O2. Although high concentrations of cobalt chloride partially mimic the effect of oxygen deprivation on protein biosynthesis, the nature of such an oxygen sensor remains unknown, and appears unlikely to be a part of a classic haem protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.