Abstract

The retina has been regarded as 'an approachable part of the brain' for investigating central nervous system (CNS). The optic nerve injury is a well-accepted model to study the mechanisms of neural degeneration and/or axonal regeneration after trauma in the CNS. Nitric oxide (NO) is a gaseous messenger molecule biosynthesized from L-arginine and molecular oxygen by NO synthase. Many reports suggest that excess production of NO plays a crucial role in neuronal cell death including in death of retinal ganglion cells (RGCs). In contrast, several lines of evidence indicate that NO can prevent neuronal death. In general, NO mediates neuroprotection through two main signaling pathways: the NO/cyclic guanosine monophosphate (cGMP) pathway and the S-nitrosylation pathway. Especially, whether S-nitrosylation of proteins promotes RGCs survival and its axonal regeneration after injury is unclear. Thus, we focused on the S-nitrosylation-dependent mechanism of RGCs survival and axonal regeneration by NO after nerve injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.