Abstract

Increased expression of endothelin-1 (ET-1) is associated with diabetic retinopathy and vasculopathy, although the molecular explanation has not been defined. The effects of high glucose and protein kinase C (PKC) activation on platelet-derived growth factor (PDGF)-BB and of ET-1 expression in the retina of streptozotocin (STZ)-induced diabetic rats and bovine retinal pericytes (BRPC) were examined. In 4-week diabetic rats, PDGF-B and prepro-ET-1 (ppET-1) mRNA levels increased significantly by 2.8- and 1.9-fold, respectively, as quantified by RT-PCR. Treatment with PKC-beta isoform-specific inhibitor (LY333531) or insulin normalized retinal ET-1 and PDGF-B expression. In BRPC, high glucose levels increased ppET-1 and PDGF-B mRNA expression by 1.7- and 1.9-fold, respectively. The addition of PDGF-BB but not PDGF-AA increased expression of ppET-1 and vascular endothelial growth factor mRNA by 1.6- and 2.1-fold, respectively, with both inhibited by AG1296, a selective PDGF receptor kinase inhibitor. A general PKC inhibitor, GF109203X, suppressed PDGF-BB's induction of ET-1 mRNA. Thus, increased ET-1 expression in diabetic retina could be due to increased expression of PDGF-BB, mediated via PDGF-beta receptors in part by PKC activation. The novel demonstration of elevated expression of PDGF-B and its induction by PKC activation identifies a potential new molecular step in the pathogenesis of diabetic retinopathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.