Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is structurally similar to the neurotoxin 1-methyl-4-phenyl-4-phenylpyridium ion (MPP+), the active metabolite of the parkinsonism-inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which can induce the parkinsonism property in rodents, nonhuman primates, and human. In contrast to the neurotoxic effects of paraquat, little is known about its effects on glial cells. Here, we examined the mechanisms of paraquat toxicity in glial cells in culture. Paraquat treatment also reduced the viability of C6 glial cells in primary astrocyte cultures, and cell death was mostly apoptotic in nature. PKCdelta played a central role in the paraquat-induced glial cell death: (1) the PKCdelta-specific inhibitor rottlerin blocked paraquat-induced glial cell death; (2) paraquat induced tyrosine and threonine phosphorylation of PKCdelta; and (3) transfection of the dominant-negative mutant of PKCdelta attenuated paraquat toxicity. PKCdelta was also involved in the generation of reactive oxygen species (ROS), which mediated the paraquat toxicity. The nicotinamide adenine dinucleotide phosphate (reduced form) oxidase (NADPH oxidase) inhibitor diphenyleneiodonium blocked the paraquat-induced ROS production and subsequent cell death, indicating the involvement of NADPH oxidase in the cytotoxic action of paraquat in glia. PKCdelta was also important in glial cell death induced by MPP+ but not in that induced by rotenone. Last, Rac1 appeared to antagonize paraquat toxicity in glia. These results indicate a gliotoxic effect of paraquat and an opposing role of PKCdelta and Rac1 in paraquat-induced glial cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.