Abstract

HypothesisTriblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) forms a well-known micellar assembly at a particular temperature. Apart from regular assembly within the copolymer, it is crucial to explore additional assembly behaviour via simple exposure of proteins which unveils biased interactions with blocks of copolymer. The current work focuses on the examination of Pluronic F108 i.e. PEG-PPG-PEG with two different proteins i.e. α-chymotrypsin (CT) and lysozyme (LSZ), aiming at probing the critical micellization temperature (CMT) and molecular level interactions. ExperimentsPotential role of protein-copolymer assembly formation at a particular concentration of protein in modulating CMT was shown by a systematic experimental approach combined with a series of physicochemical methods. The sophisticated multiple techniques include fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, dynamic light scattering (DLS), zeta potential measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Furthermore, molecular docking studies were also employed to correlate theoretical insights with experimental findings. FindingsCT and LSZ decrease CMT in regular concentration-dependent manner except for particular concentration (1.5 mg/mL) of LSZ which shows anomalous behaviour in steady-state fluorescence spectroscopy, temperature dependent fluorescence spectroscopy, Raman spectroscopy and DLS measurements. SEM and TEM results clearly reveal protein-copolymer assembly formation. The assembled structure has different biophysical properties. Docking studies elucidate several bio macromolecular interactions which can be involved in assembly formation. Based on obtained results from biophysical techniques mechanism of CMT variation was deduced. Obtained results can be useful in biosensors and targeted drug delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call