Abstract

In anesthetized rats increasing ureteral pressure results in an increase in ipsilateral afferent renal nerve activity and a reflex increase in contralateral urine flow rate and urinary sodium excretion that is dependent on intact prostaglandin synthesis. Activation of renal pelvic substance P receptors contributes to the renorenal reflex responses to increased ureteral pressure. Because these data suggested that renal sensory receptors could be activated by both prostaglandins and substance P we examined whether activation of renal sensory receptors by substance P was dependent on intact prostaglandin synthesis. The renal pelvis was perfused with capsaicin, 2.5 micrograms/ml, or substance P, 4 micrograms/ml, before and during renal pelvic perfusion with the prostaglandin synthesis inhibitor indomethacin, 50 micrograms/ml. Indomethacin reduced the peak ipsilateral afferent renal nerve activity responses to capsaicin and substance P by 83 +/- 15% and 81 +/- 8%, respectively, as well as the contralateral diuretic and natriuretic responses. We also examined the effects of renal pelvic administration of indomethacin on the responses to renal pelvic perfusion with bradykinin. Bradykinin, 20 micrograms/ml, increased peak ipsilateral afferent renal nerve activity by 197 +/- 47% and contralateral urine flow rate and urinary sodium excretion by 31 +/- 6 and 20 +/- 6%, respectively. Indomethacin reduced the ipsilateral afferent renal nerve activity response by 76 +/- 9% and abolished the contralateral diuretic and natriuretic responses to bradykinin. We conclude that renal sensory receptor activation by capsaicin, substance P, and bradykinin is dependent on intact renal prostaglandin synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.