Abstract

Morbidity and mortality of chronic kidney disease (CKD) patients are largely associated with vascular calcification, an actively regulated process in which vascular smooth muscle cells (VSMCs) change into cells similar to osteocytes/chondrocytes, known as trans-differentiation. Cellular and systemic response to low oxygen (hypoxia) is regulated by the prolyl hydroxylase/hypoxia-inducible factor (HIF)-1 pathway. Recent studies highlighted that hypoxia-mediated activation of HIF-1 induces trans-differentiation of VSMCs into bone-forming type through an increase in osteo-/chondrogenic genes. Inhibition of the HIF-1 pathway abolished osteochondrogenic differentiation of VSMCs. Hypoxia strongly enhanced elevated phosphate-induced VSMC osteogenic trans-differentiation and calcification. HIF-1 was shown to be essential for phosphate enhanced VSMC calcification. O2-dependent degradation HIF-1 is triggered by the prolyl hydroxylase domain proteins (PHD). Prolyl hydroxylase inhibitors, daprodustat and roxadustat, increase high phosphate-induced VC in VSMCs, stabilizing HIF-1α and activating the HIF-1 pathway in these cells. Whether the use of these PHD inhibitors to treat anemia in CKD patients will favor the development and progression of vascular calcification remains to be explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call